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NSWC TR 80-491

FOREWORD

Significant differences in underwater shock wave peak pressure and decay
constant have been measured when identical explosive charges have been fired at
different test sites. This "Key West Effect" has resulted in uncertainties in
interpreting explosion test data. This report presents a method for
quantitatively describing these and other changes in underwater explosion shock
wave parameters in terms of the sound speed and density of the ambient water.

This work is part of the Explosives Development, Effects, and Safety Program
of the Naval Sea Systems Command and was supported by Task Area SF-33-354-391.
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SCALING UNDERWATER EXPLOSION SHOCK WAVES FOR DIFFERENCES

IN AMBIENT SOUND SPEED AND DENSITY

1. INTRODUCTION

In the measurement of underwater explosion shock waves it has generally been

assumed that local ambient water conditions have a negligible effect on the

recorded pressure signature.I The exception to this is when distortions due to

refraction occur. A recent set of data shows that even with no refraction, the

shock wave pressure signature n~ay be strongly dependent on the temperature and

salinity of the water.

In an underwater explosions field test conducted by the Naval Surface Weapons

Center (NSWC) the test site had to be moved from one location to another in mid-

program. After a number of shots had been fired in the Potomac River at Dahlgren,

Virginia, in January of 1979, the operation was suspended due to environmental

considerations. The remaining shots were fired in the Atlantic Ocean near Key

West, Florida, in June of 1979.

The program consisted of a number of different explosives fired in 100-lb

charges. Duplicate shots of four different charges were fired at the two sites.

There was a consistent pattern of variation in measured pressures between the two

sites. This is shown by the pairs of curves on the left hand side of Figures 1.1

through 1.4. These curves are the familiar power law fits* made by the method of
ICole, Robert H., 1948, "Underwater Explosions," Princeton University Press

Reference 1, p 238
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least squares to the experimental data for peak Pressure, decay constant, impulse

ano eneray flux density from four different tyoes of explosive charges--each fired

at the two sites. They show that in moving from Dahlgren (solid curves) to Key

West (dashed curves) the peak pressure increased about 12'., the decay constant

decreased about 140, the impulse decreased about 4%, and the energy flux density

was not significantly changed. Differences between the Key West and Dahlgren test

conditions are summarized in Table 1.1.

Gaspin and Lehto 2 have shown that this "Key West Effect" is real and that it

can be approximately accounted for by differences between the two sites in the
sound speed, co, and the bulk modulus, K 2, whr i

density. From an approximate physical model they estimated the effect on peak

ove'pressure, PMAX, and on decay constant, 2, at a fixed distance from the charge

to be

02 (14,500 > PMAX > 1450 psi) ( .I)

_MA XI 1

2 C (1.2)

Equation 1.1 is in good agreement with the experimental data shown in Figure 1.1,

while Equation 1.2 partially corrects for the change in decay constant shown in

Figure 1.2. Lehto and Gaspin do not give results for the effects on impulse and

energy flux density.

The purpose of this note is to demonstrate the possibility of accounting for

changes in the peak pressure, decay constant, impulse, and energy flux density

2 GasDin, J. B. and Lehto, D. L., "Effects of Water Temperature and Salinity on
Underwater Explosion Shock waves," NSWC Reoort to be published

10
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I
I

Table 1.1 Key West vs Dahlgren Differences

(Average Values for 2 Sites)

Oahlgren Key West nge

Water Temperature (Deg. C) 2.3 27.8 + 25.5

Salinity (%N 7.6 36.5 + 2S.9

Sound Speed (ft/sec) 4668 5048 + 8.1"

Water Density (gm/cc) 1.006 1.024 + 1.8%

Bulk Modulus (Ib/ft2) 42.54 E6 50.66 E6 +19.1'

Peak Pressure 
4l2o,

Decay Constant 
-1 40

Impulse 
-4

Energy Flux Density 
0-

111
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(PMAX, e, i, and E) due to variations in c and c0 by simply rederiving the

dimensionless variables used to formulate the underwater explosion shOCK wave

similitude equations--and not discarding c-o and co. The pairs of curves shown on

the right-hand side of Fioures 1.1 through 1.4 show the results of this effort.

2. SIMILITUDE EQUATIONS

The similitude equations for the underwater explosion shock wave'

PMAX k (2.1)

e (2.2)

1mW1 /3  (2.3)

C n W1 /(W1/ 3  6(2.4)

are specific expressions (power curve fits, y = ax b) of a general scaling expressed

by

p(R, t) - F ( R . (2.5)

We now proceed to rederive Equation 2.5 from dimensional considerations but

retaining the dependence on o and co. The significant variables for the problem

are:

p = p(t) = shock wave overpressure

R = radial distance from center of charge

t = time

Yo = total chemical energy released upon detonation

CO = ambient water density

co - ambient sound speed.

12
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Thus, we are in effect assuming that the overpressure, p, is a function of R, t,

Yo0 1o, and c0 or that

f (p, R, t, Y0 9 po', co) 0 (2.6)

where f is some unknown function. These six variables in Equation 2.6 can be

expressed in terms of three dimensions--mass, length, and time. By Buckingham's

i-theorem3 , the problem can be reformulated in terms of three dimensionless groups

or -r's and the solution must be of the form

F (I' Tr2 1 3) 0 (2.7)

A convenient set of r's for considering this problem is the following*

KL =P (2.8)
Po~o

(PoCo 2 )1/3R KI'' 3 R (
002 = 0 -0 (2.1)

=co(Poc) 1/ 3t cOK 0 t/

•3 Y 1/3 Yi3(.0
Yo

where, Ko = POC 2  which is the bulk modulus of the ambient water.

Making use of this set of 7,'s Equation 2.7 can be written

G __T(2.11)

0 /
where G is some unknown function.
3 Buckingham, E., 1914, "On Physically Similar Systems; Illustrations of the Use of
Dimensional Equations," Physical Review, Vol. 4, p 345

*The reader is referred to References 3 and 4 for the method of determing
convenient sets of 7's.

4 Johnson, Walter C., 1944, "Mathematical and Physical Principles of Engineering
Analysis," McGraw-Hill, (Chapter IX)

13
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If we restrict our consideration to a single explosive, we can

replace Y in Equation 2.11 by W, the weight of explosive, and obtain

p(R,t): (Ko1"3  Coo i1"3t)
P( Ht K 0 c0 /o (2.12) IK H 1/wi' W 1/3

which is similar to Equation 2.5 except we have retained the desired dependence on

o and co. Note, if we assume K and c are constants, then Equation 2.12 is

equivalent to the familiar shock wave scaling expressed by Equation 2.5.

Generalized Similitude Equations. Note that the similitude equations,

Equations 2.1 through 2.4, are simply power curve fits to experimental data using

dimensionless variables. Thus, our generalized similitude equations are simply

PMAX k* K 3 R (2.13)

o 0 Ko"o & = * ( w l/-r t- -) 2. 14 )

c 0 1 =m* Kl /R), (2.15)c K'3  ' 1/3  -

E n* • , (2.16)
K 2/3W 1/3\ W

through 2.16, respectively. Comparison then shows that

14W

0i
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k* k (2.17)
K1K 3
0

£.* . C0 K 0(0- /) 3 (2.18)

m c
m* 0 (2.19)Ko(7-y)/3 

!

n* n K0 (6-2)/3 (2.20)

Equations 2.17 through 2.20 can be used to compare data fits made using Equations

2.13 through 2.16 to those made using Equations 2.1 through 2.4.

By substitution into Equations 2.13 through 2.16, we determine the changes

in PMAX, 8, I, and E at constant range due to different ambient conditions. They

are as follows:

PMAX 2  (Ko (2.21

cT /K 0 lf

I2 (2.22)

15

01 ( 02 (223
T c 0  ~K O

- (2.24)

15
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Changes in the similitude coefficients--k, t, m, n--from one ambient state

to another can be computed from Equations 2.17 through 2.20. They are

k K 0(2.25)

Z2 n l (K 3 (2.26)
c 01

m2 --

2(2.27)

6-2

n2 (o) (2.28)
n .2

3. RESULTS

The pairs of curves shown on the right-hand side of Figures 1.1 through 1.4

have been calculated from the corresponding curves shown on the left using

Equations 2.13 through 2.20 and the values for ambient water density and sound

speed measured on the respective shots. They have been scaled to the same ambient

water condition, Po I gm/cc and co = 5000 ft/sec. For these tests the generalized

similitude equations, Equations 2.13 through 2.16, do a good job of accounting for

the observed changes in all of the shock wave parameters, PMAX, e, I, and E. The

calculated change in energy flux density from Dahlgren to Key West is a decrease of

about 0.1% which is too small to detect experimentally or to observe on Figure 1.4.

16
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4. DISCUSSION

5Inserting current NSWC values , a = 1.19, a : 0.26, Y 0.90, 2.10, for

the similitude equation exponents for cast 50/50 pentolite into Equations 2.21

through 2.24, we get

PMAX 2(KO20.0
2...- 2O)0 (4.1)

' 2 1K025 (4.2)

1 2 0 3 7"( 4 .3 )

1 =/

E2 (o 1') (4.4)

The result for peak pressure is essentially the same as Lehto and Gaspin's result

(Equation 1.1). The result for decay constant is apparently more complete than

their result (Equation 1.2). The results for impulse and energy flux density are

new and are in agreement with experimental measurements.

5Price, Robert S., M.!SLIC limitmd distribution renort

17
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In the final analysis, the value of these generalized similitude equations

will only be demonstrated by extensive use. This should include incorporation

into the shock wave data analysis programs used by the Naval Surface Weapons

Center. The equations needed to do this are derived in the Appendix.

18
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APPENDIX A

POWER LAW FITS TO MEASURED DATA

Since self-consistent units of measurement are not used in underwater

explosion research in this country, it is not recommended to make power law fits

to experimental measurements using Equations 2.13 through 2.16. Instead, we can

make use of the dimensionless variables implied in Equations 2.13 through 2.16

and scale our measured experimental quantities--R, PMAX, 8, I, E--to some standard

condition, e.g., fresh water at some standard temperature and pressure*. Thus,

using Equations 2.13 through 2.16

K 1/3R K 1/ 3 R
* w/ (A.1)

PMAX

PMAX* = PMAX - s (A.2)K K0 s

8" c°°I/3B Cs~1/3s
c= K1/3  = cK 1 /36 (A.3)

WI/ WI/

I* = 0 K s (A.4)
Ko2/3W 1/3 Ks2/3 W1/3

0 s

E* E Es
K0

2 * K s(A.5)Ko2/3 w1/3 K 23W /

*The author recommends that a standard condition be adopted for reporting measu-ed
values of similitude coefficients and suggests that fresh water at 150 C and I
atmosphere pressure would be suitable. With this choice os = 0.99913 gm/cc and
cs = 4809.3 ft/sec. 6

6 Del Grosso, V. A., "New Equation for the Speed of Sound in Natural Water!. (With
Comparisons to Other Equations)," J. Acoust. Soc. Am., October 1974

A-i
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where "*" denotes a dimensionless variable and subscript "s" denotes standard

condi tion. V
Solving Equations A.1 through A.5 for Rs, PMAXS, es, Is, E s respectively,

we get i
Rs K R (A.6)

K
PMAXs = S-K PMAX (A.7)

0

s : S 6 (A.8)

- (A.9)

(s )2/3E (A.10)

The derived quantities Rs, PMAXs, s, Is and Es can be used to make the power

law fits indicated by the ordinary similitude equations (Equations 2.1 through

2.4); and thereby obtain coefficients--ks , is ms, ns'-and exponents--as, s "sf

Ss--scaled to the desired standard condition. This can be verified by substituting

Equations A.6 through A.10 into Equations 2.13 through 2.16 to get

PMAX k* K T-1  (A.11).5
W c(K

Cs~ sI•/ (A.12)

A-2

I -k

"" 4.•
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I n*mKR
K s K(2)/3 (A.14)

Substituting Equations 2.17 through 2.20 into Equations A.11 through A.14,

respectively, we get

PMAX k ( k -/3 (A.15)

s z s (A.16)

I s

Es (W/ 3 (5

(W- s i-) (A.18)

which is our desired result.

A-3
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